What are Rational Numbers?
A rational number is any number that can be written in the form:
\frac{p}{q} \quad \text{where } p, q \in \mathbb{Z} \text{ and } q \neq 0p = numerator
q = denominator
Examples
(a) \frac{3}{4} (b) -\frac{7}{5} (c) 2 = \frac{2}{1} (d) 0 = \frac{0}{1}
Not Rational
(i) \sqrt{2} (ii) \pi (iii) 0.333\ldots (recurring without pattern)
Types of Rational Numbers
(a) Integers
All integers are rational numbers:
-3 = \frac{-3}{1}, \quad 5 = \frac{5}{1}
(b) Fractions
Proper fraction:\frac{3}{5} Improper fraction: \frac{7}{4} Mixed number: 1\frac{3}{4}
(c) Terminating Decimals
Decimals that end:
0.25 = \frac{1}{4}, \quad 0.6 = \frac{3}{5}
(d) Recurring (Repeating) Decimals
Decimals with a repeating pattern:
0.\overline{3} = \frac{1}{3}, \quad 0.\overline{12} = \frac{4}{33}
CONVERTING BETWEEN FORMS
(a) Converting Fraction to Decimal
Divide numerator by denominator.
Example
\frac{3}{4} = 0.75(b) Converting Terminating Decimal to Fraction
Write over a power of 10 and simplify.
Example
0.2 = \frac{2}{10} = \frac{1}{5}(c) Converting Recurring Decimal to Fraction
Let the number equal (x).